

OSMA Training Perspectives

Presented at the Technical Excellence Summit

NASA Safety Center July 23-24, 2008

> Homayoon Dezfuli Manager, System Safety, Office of Safety and Mission Assurance NASA Headquarters

Acknowledgement

- My OSMA colleagues who contributed to this talk:
 - Frank Groen
 - Peter Prassinos
 - Michael Stamatelatos
 - William Vesely

A Simple Model for Making Change and Improvements

- Environment: A collection of attributes that are necessary for the functioning of a process, activity, program, etc.
- SMA Environment:
 - Directives (including responsibility and authority)
 - Technical guidelines and procedures

Policies and Procedures

- Technical skills of individuals and their desire to excel
- Attitudes and perceptions of individuals regarding their roles
- Etc.
 Workforce Skills and Motivations

Policies and Procedures

- A set of consistent and coherent directives and associated technical procedures that promotes
 - Technical rigor in SMA products and services
 - Engagement in and contribution to systems engineering and decision processes throughout lifecycle
 - True integration of SMA activities to manage safety and risk

Merriam-Webster (http://www.m-w.com) dictionary defines:

- Consistent: agreement or harmony of parts or features to one another or a whole: without contradiction
- Coherent: systematic or logical connection

- Workforce Skills and Motivations
 - A technically qualified SMA workforce that is recognized as the critical supplier of safety, reliability, risk analysis, and assurance services
 - Subscribes to a systems approach to SMA activities
 - Subscribes to technical rigor to enhance credibility
 - Motivated to proactively learn and apply new technical skills and tools
 - Self-assesses and corrects technical inadequacies

Attributes of Technical Excellence

Systems Approach to SMA Activities

SARD's Perspective of the Current SMA Environment

- Policies and Procedures
 - Key policy documents are becoming more consistent and coherent
 - Advocate a proactive, analytic, and integrated approach to risk-informed management of safety and technical risks
 - Advocate integration of SMA activities with systems engineering and decision processes
- Handbooks and procedural documents are still needed

SARD's Perspective of the Current SMA Environment

- Workforce Skills and Motivations
 - Experienced in detailed, qualitative assessments
 - Limited use of analytic, integrated modeling approaches
 - Limited knowledge of statistics, probability theory, and uncertainty quantification (per NESS)
 - New skills learned on as-needed basis (reactive versus proactive)
 - Most available, offered training lack technical rigor, consistency, and coherence

System Safety Example

Policy and Procedures

- The requirements for system safety (SS) were revised significantly in July 2006 (NPR 8715.3)
- The changes were made to introduce technical rigor into SS modeling and to couple it with systems engineering and decision processes (Target Environment)
- Prior to this change
 - System safety practices had remained grounded in the modeling approach of the 1970s
 - Lacked technical rigor and systems approach
 - SS Product: Qualitative Hazard Analysis Report AND Risk Metrics
- This state of affair was incoherent with Agency's initiatives to advance Probabilistic Risk Assessment application

Workforce Skills

- Qualitative hazard analysis and qualitative risk analysis are pervasive
- Most available, offered SS training are inconsistent with the change in policy direction

- Consistency with Agency's policy and directives
- Promotes technical rigor
- Promotes analytical approaches
- Promotes systems view
- Addresses Agency's technical needs
- Coherence among training courses
- Supports risk-informed decision making

- Core training is needed to address limitations in SMA workforce skills including
 - Probabilistic Analysis for Engineers
 - Analytical System Safety Analysis (e.g., Scenariobased Hazard Analysis)
 - Analytical Reliability Analysis
 - Risk-informed Decision Analysis
- OSMA will lead in developing these courses and interface with NSC for their delivery
- OSMA has initiated work on these courses